BCHM 461: Biochemistry I, Section 0102: TuTh, 9:30-10:45am, Chemistry 1402
Spring 2002

Prof.: David Fushman
Office: Room 1121 Agriculture/Life Sciences Surge Bldg (#296); x53461,
fushman@wam.umd.edu (much preferred to phone), Please restrict telephone inquiries to office
hour times, except in “emergencies”. Email is welcome anytime.
Office hours: Wednesday, 2:30-3:30, Thursday, 11:30am-12:30pm,

Teaching Assistant: Ms. Ranjani Varadan
Office hours: Monday, 4-5pm, Friday, 9-10 am, Room 2103, Agriculture/Life Sciences Surge
Bldg., x58710, ranjani@wam.umd.edu

Course Description

Biochemistry is the study of the molecular basis of life. Biochemistry 461 is an introductory
course that will focus on basic concepts in biochemistry and will provide the vocabulary and
grammar needed to pursue further course work and research in this field. We will cover the four
major classes of biological molecules: proteins, carbohydrates, lipids, and nucleic acids. The
emphasis will be on the chemical properties and three-dimensional structure of these molecules
in relationship to their biological function.

Textbooks:
Recommended: The Absolute, Ultimate Guide to Lehninger Principles of Biochemistry, 3rd
dition, by Osgood and Ocorr.
The publisher’s web site (http://www.worthpublishers.com/lehninger) that accompanies the
Lehninger textbook, contains interactive tutorials to further illustrate the class material, study aids, links to protein data bases, and suggestions for further reading about some topics.

Additional recommended sources (on reserve in the Chem. library, no need to buy them):
Biochemistry, 2nd edition, by Voet and Voet

There is a course homepage at:
http://gandalf.umd.edu/BCHM461/

where you will find a copy of the syllabus, practice problems, study hints, and extra materials.
Some of these materials will be posted as we proceed with the course. You are welcome to email
your questions and comments. I do not guarantee individual responses, but errors or common
points of confusion will be addressed in class.

Course Outline

The exact order of topics and the number of lectures on each may change, but exam dates are
firm and you will have at least one week between the presentation of material and testing on it.
1. **Introduction** (2 lectures) *

   - The molecular logic of life
   - Biomacromolecules: composition and principles of organization
   - Energy and principles of bioenergetics

   Ch.1

   Ch.3 pp. 53-65,69-73

   Ch.1, pp. 9-12, Ch.14, pp. 490-499

2. **Water** (2 lectures)

   - Non-covalent interactions
   - Properties of water
   - Acid/base properties, pH buffering capacity

   Ch.4

   pp. 82-84,86-91

   pp. 83-91

   pp. 95-107

3. **Protein structure and stability** (8 lectures)

   - Amino acids – structures, nomenclature, chemistry.
   - Primary structure – the peptide bond, sequence homology and evolution, sequencing and synthesis
   - Secondary structure – α-helices, β-sheets, turns, Ramachandran plot, structure prediction
   - Three-dimensional structure of proteins. Methods for protein structure determination: X-ray, NMR, homology modeling
   - Tertiary structure, protein motifs & structure classification.
   - Quatermary structure
   - Protein denaturation and folding
   - Methods for purifying and studying proteins.

   Ch.5

   pp.115-126

   pp.126-129,137-153

   pp.159-169

   pp. 178-181

   pp.170-177,182-188.

   pp. 1701-72,188-191.

   pp. 191-198

   pp.130-137

4. **Protein function** (8 lectures)

   - Oxygen binding proteins
   - Quantitative analysis of protein-ligand interactions, cooperativity
   - Enzymes -- how they work
   - Enzyme kinetics – Michaelis-Menten equation, Lineweaver-Burke plots
   - Enzyme inhibition -- mechanisms
   - Examples of enzymatic reactions

   Ch.7, pp. 203-221

   Ch.7, pp. 206-209, 214-216

   Ch.8, pp. 243-257

   Ch.8, pp. 257-266.

   Ch.8, pp. 266-269.

   Ch.8, pp. 269-289

5. **Carbohydrates and glycobiology** (2 lectures)

   Ch. 9

6. **Nucleotides and Nucleic Acids** (2 lectures)

   Ch.10

7. **Lipids and Membranes** (2 lectures)

   - Lipids
   - Biological membranes and transport

   Ch.11

   Ch.12

* Note that Chapter 3 in *Lehninger* includes a short review of some basic chemical principles, structures, and reactions. I will not go over this material in the lecture but I urge you to review it yourself, especially if it has been some time since you last saw these topics.
Examinations. Examinations will be given on the following dates:

I  Tuesday, February 26  
II  Tuesday, March 19  
III  Tuesday, April 16  
Final exam:  **Tuesday May 21, 1:30-3:30 pm**

Grading Policies. Each exam during the semester will be worth 100 points and the final exam will be 150 points. Exams during the semester will include only the material covered since the previous exam but will inevitably draw on information from earlier in the semester. The final will cover the entire course material. The exams will include material covered in the lectures and in the corresponding sections of the textbook. Problem sets are optional but completing them is likely to be very helpful in your preparation for the exams. All exams will be 75 min long and will be given in the lecture hall (Chem 1402). You will be allowed to use calculators for computation only.

Your final letter grade will be based on your total score on the three mid-term exams and on the final exam (maximum 450 points). Grading will be done on a *curve* based on the overall distribution of the class scores. You will be guaranteed an A if your total score is 85% or better, a B if it is 60% or better and a C if it is above 30%. Final grading will then be done using the new +/- grading system, as follows. The cut-offs for A, B, etc grades will be determined first. Then each letter-range will be divided into three groups: all students whose scores are in the upper third of, e.g. B range will be given a B+, those in the middle will receive a B, and the lower third will receive a B-, and so on.

Regrades.
If you think a mistake has been made in grading your work, you must submit it to me for regrading no later than one week after the date on which the work was returned to the class, with a written explanation of your reasons for desiring a regrade. The entire exam in subject to regrading, which often decreases the total score. After that, the grade will be considered final. Arithmetic errors in the grading can be corrected without regrading.

Make-up exam policy.
Do not miss any of the four exams. If you miss an exam, **you will have a score of “0” on the exam until it is made up.** Only students with *legitimate excuses* as determined by the University policy will be given a make-up exam. For a make-up exam you will need written documentation of the emergency or illness. **It is your responsibility to contact me promptly to schedule a make-up exam. In any case, YOU MUST CONTACT ME WITHIN 24 HOURS OF MISSING AN EXAM.**

All students must take the final exam.

Please notify me as soon as possible if you know ahead of time that you will miss an exam for any reason, including previously scheduled events, religious observances, etc. According to the University policy you must tell me no later than Feb 8 (the last day of schedule adjustment period).
Academic integrity.
From the Code of Academic Integrity, University of Maryland, College Park:
“The University is an academic community. Its fundamental purpose is the pursuit of knowledge… Essential to the fundamental purpose of the University is the commitment to the principles of truth and academic honesty. Accordingly, The Code of Academic Integrity is designed to ensure that the principle of academic honesty is upheld…”
The Code of Academic Integrity is available on the University web site at http://www.inform.umd.edu/CampusInfo/Departments/JPO/code_acinteg2a.html
And is printed in the current Schedule of Classes. Students are responsible for knowing and understanding the content of the Code.
There will be zero tolerance to violations of the Code of Academic Integrity. Suspected cases will be reported immediately to the appropriate authorities. The standard penalty for violations of the Code of Academic Integrity is a grade of “XF”

Specific guidelines relevant to this course include:
1. All work that you submit for grading in this course (i.e. examinations) must be the original work of the student whose name is on the work.
2. You may use a calculator for most in-class exams, but only for computation. Any other use is a violation of the University’s Code of Academic Integrity.
3. Other actions such as falsification of excuses for missed exams or submission of an altered, graded examination for regrading, etc., are also violations of the Code of Academic Integrity or the Code of Student Conduct.

Honor Pledge
The University of Maryland Honor Pledge reads:
"I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination."

The Pledge statement should be handwritten and signed on the front cover of all examination papers submitted for evaluation in this course. Students who fail to write and sign the Pledge will be asked to confer with the instructor. Further information about the Honor Pledge can be found on the University web page:
http://www.inform.umd.edu/CampusInfo/Departments/JPO/AI/honorpledge/

Teaching assistance.
The teaching assistant for this course is Ms. Ranjani Varadan, an advanced graduate student in the Biochemistry program.
We are happy to help you with the material during office hours. If necessary, we will arrange other times to meet. Review sessions will be scheduled before each exam. If you believe a mistake has been made in lecture (I guarantee this will happen), please speak up or inform me afterward. Please ask questions in lecture if something is not clear.